skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bhargav, Vikas N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The interactions between fluid flow and structural components of collapsible tubes are representative of those in several physiological systems. Although extensively studied, there exists a lack of characterization of the three-dimensionality in the structural deformations of the tube and its influence on the flow field. This experimental study investigates the spatio-temporal relationship between 3D tube geometry and the downstream flow field under conditions of fully open, closed, and slamming-type oscillating regimes. A methodology is implemented to simultaneously measure three-dimensional surface deformations in a collapsible tube and the corresponding downstream flow field. Stereophotogrammetry was used to measure tube deformations, and simultaneous flow field measurements included pressure and planar Particle Image Velocimetry (PIV) data downstream of the collapsible tube. The results indicate that the location of the largest collapse in the tube occurs close to the downstream end. In the oscillating regime, sections of the tube downstream of the largest mean collapse experience the largest oscillations in the entire tube that are completely coherent and in phase. At a certain streamwise distance upstream of the largest collapse, a switch in the direction of oscillations occurs with respect to those downstream. Physically, when the tube experiences constriction downstream of the location of the largest mean collapse, this causes the accumulation of fluid and build-up of pressure in the upstream regions and an expansion of these sections. Fluctuations in the downstream flow field are significantly influenced by tube fluctuations along the minor axes. The fluctuations in the downstream flowfield are influenced by the propagation of disturbances due to oscillations in tube geometry, through the advection of fluid through the tube. Further, the manifestation of the LU-type pressure fluctuations is found to be due to the variation in the propagation speed of the disturbances during the different stages within a period of oscillation of the tube. 
    more » « less
  2. Plume-surface interactions (PSI) occur during the take-off and landing of interplanetary vehicles, leading to particle ejection and the formation of craters. This can be detrimental to the vehicle and any structures or infrastructure near the landing site. A major challenge in developing a comprehensive understanding of this three-dimensional phenomenon is the need to characterize the ejecta and cratering dynamics simultaneously. Here, experiments are conducted in a vacuum chamber at different nozzle heights and ambient pressure conditions using high-speed stereo-photogrammetry and planar particle tracking velocimetry to quantify the cratering and ejecta dynamics. Predictably, it was observed that the trajectory of ejecta with a large Stokes number was mostly unaffected by the nozzle flow after leaving the crater. Under rarefied conditions, the ejecta kinematics (velocity, ejection angle, range, and height) were significantly different compared to continuum conditions. Finally, the findings demonstrate a dependency between ejecta kinematics and crater topology for the current test cases, providing critical insights into particle ejection’s initial characteristics. 
    more » « less